## edexcel

# Mark Scheme (Results) 

Summer 2012

GCSE Mathematics (Linear) 1MA0 Foundation (Non-Calculator) Paper 1F

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UG032619
All the material in this publication is copyright
© Pearson Education Ltd 2012

## NOTES ON MARKING PRINCIPLES

All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

Comprehension and meaning is clear by using correct notation and labeling conventions.
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

## With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

## Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

## Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

## Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

## Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

## Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

## Range of answers

Unless otherwise stated, when an answer is given as a range (e.g $3.5-4.2$ ) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

```
Guidance on the use of codes within this mark scheme
M1 - method mark
A1 - accuracy mark
B1 - Working mark
C1 - communication mark
QWC - quality of written communication
oe - or equivalent
cao - correct answer only
ft - follow through
sc - special case
dep - dependent (on a previous mark or conclusion)
indep - independent
isw - ignore subsequent working
```

| 1M |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 1 | (a) |  | 380 | 1 | B1 cao |
|  | (b) |  | 6.2 | 1 | B1 cao |
|  | (c) |  | Arrow at 34 | 1 | B1 cao |
| 2 | (a) |  | 8 | 1 | B1 for $8 \pm 0.2$ |
|  | (b) |  | 35 | 1 | B1 for $35 \pm 2^{\circ}$ |
|  | (c) |  | Circle drawn | 1 | B1 for all parts within $\pm 2 \mathrm{~mm}$, (use overlay) |
| 3 | (a) |  | 4, 7, 4, 3, 2 | 2 | M1 for at least 3 correct tallies or at least 3 correct frequencies <br> A1 for all frequencies correct |
|  | (b) |  | 7 | 1 | B1 for 7 or ft from frequencies in (a) or tallies if no frequencies |
|  | (c) |  | Diagram drawn | 3 | M1 for bar chart or other suitable chart with at least 3 correct heights for their scale (can f.t.) |
|  |  |  |  |  | A1 for all 5 bars correctly labelled and vertical axis correctly scaled |
|  |  |  |  |  | A1 for fully correct or ft frequencies in (a) |
|  |  |  |  |  | M1 for pictogram with at least 3 correct rows (can f.t.) |
|  |  |  |  |  | A1 for correct labels on all 5 rows and correctly key |
|  |  |  |  |  | A1 for fully correct or ft frequencies in (a) |
|  |  |  |  |  | M1 for pie chart with at least 3 correct sectors $\pm 2^{\circ}$ (can f.t.) |
|  |  |  |  |  | A1 for all 5 sectors correctly labelled <br> A1 for fully correct or ft frequencies in (a) |


| 1MA0_1F |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 4 |  | $\begin{aligned} & £ 1.18+94 \mathrm{p}=£ 2.12 \\ & £ 5-£ 2.12-30 \mathrm{p} \\ & =£ 2.58 \\ & £ 2.58 \div 2= \end{aligned}$ | 1.29 | 3 | M2 for $(5-1.18-0.94-0.30) \div 2$ oe or digits 129 <br>    or 2.12 seen  <br> (M1 for $1.18+0.94$ or   <br>  or $1.18+0.94+0.30$ oe or 2.42 seen  <br>  or $5-1.18-0.94$ oe or 2.88 seen  <br>  or $(5-1.18-0.94) \div 2$ or 1.44 seen  <br> or or $5-1.18-0.94-0.30$ oe or 2.58 seen $)$  <br> A1 cao      <br> NOTE: Accept working in $£$ or pence     |
| 5 | (a)(i) <br> (ii) <br> (b) |  | $(2,3)$ $(-3,1)$ Point plotted at $(3,-4)$ | $2$ | $\begin{aligned} & \text { B1 cao } \\ & \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$ |
| 6 | (a) <br> (b) <br> (c) |  | $\begin{gathered} -5 \\ 6 \\ 3 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{array}{lllll} \hline \text { B1 } & \text { cao } & & \\ \text { B1 } & \text { for } & 6 & \text { or } & -6 \\ \text { B1 } & \text { cao } & & & \end{array}$ |
| 7 |  |  | $\begin{gathered} \text { (P, B), (P, S), (P, L) } \\ (\mathrm{M}, \mathrm{~B}),(\mathrm{M}, \mathrm{~S}),(\mathrm{M}, \mathrm{~L}) \end{gathered}$ $(\mathrm{H}, \mathrm{~B}),(\mathrm{H}, \mathrm{~S}),(\mathrm{H}, \mathrm{~L})$ | 2 | M1 for any 3 combinations with no incorrect combinations A1 for all 9 combinations with no duplicates or extras |
| 8 | (a) <br> (b) | $24 \div 4=$ | Walk <br> 6 | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | B1 cao <br> M1 for $24 \div 4$ oe or $1 / 4$ oe seen <br> A1 cao |


| 1MA0_1F |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 9 | (a) <br> (b) |  | Isosceles triangle <br> Rectangle with area $12 \mathrm{~cm}^{2}$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | B1 for isosceles triangle <br> M1 for rectangle drawn <br> A1 cao |
| 10 | (a) <br> (b) |  | A marked at 0 <br> B marked at $1 / 4$ | $1$ $1$ | B1 for A marked at 0 (within overlay) <br> B1 for B marked at $1 / 4$ (within overlay) |
| 11 | (a) <br> (b) |  | $\begin{gathered} 9 \\ 33 \end{gathered}$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | B1 cao  <br> M1 for $5 \times 5$ or 25 seen in the working <br>  or $2 \times 2 \times 2$ or 8 seen in the working <br> A1 cao  |
| 12 | (a) <br> (b) |  |  | $2$ $2$ | M1 $3 \times 3 \times 3$ oe seen or drawn or 27 seen or use of 3 layers <br> A1 cao <br> B2 for correct view <br> (B1 for <br> or ) |
| 13 | (a)(i) <br> (ii) <br> (b) <br> (c) |  | $\begin{gathered} 0729 \\ 36 \\ 0751 \\ 0955 \end{gathered}$ | $2$ <br> 1 <br> 1 | B1 for 0729 <br> B1 for 36 or ft difference between (i) and 0653 <br> B1 cao <br> B1 for 0955 or 955 or five to ten |


| 1MA0_1F |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 14 |  | $\begin{aligned} & 2+8+2+8=20 \\ & 20 \div 4= \end{aligned}$ | 5 | 4 | M2 for $2+8+2+8$ oe or 20 seen or $(2+8) \div 2$ oe (M1 for the sum of 3 sides of the rectangle) <br> M1 (dep) for the sum of 3 or 4 sides of the rectangle $\div 4$ or an attempt to evaluate $(2+8) \div 2$ oe to get the length of one side <br> A1 cao <br> SC: B1 for an answer of 4 coming from $\sqrt{2 \times 8}$ oe |
| 15 | (a) |  | 4 | 1 | B1 cao |
|  | (b) | $\begin{aligned} & 9.5-4.75= \\ & \text { OR } \\ & 9.5 \div 2= \end{aligned}$ | 4.75 | 2 | $\begin{aligned} & \text { M1 for } 9.5-4.75 \text { or } 9.5 \div 2 \text { or } 4.75-9.5 \\ & \text { A1 } \begin{aligned} \text { cao } \end{aligned} \\ & \hline \end{aligned}$ |
|  | (c) |  | 6 | 1 | B1 cao |
|  | (d) | $12 \times 4=$ | 48 | 2 | M1 for $\times 4$ seen or identifying +0.5 for every 2 inches <br> or $12+12+12+12$ oe <br> or build up method eg 12, 24, 36,48 allow one error <br> A1 cao |
| 16 |  |  | trapezium |  | B1 for trapezium or isosceles trapezium |
|  | (b) |  |  | 2 | B2 for correct tessellation (at least 5 more shapes) <br> (B1 for at least 4 shapes (including initial shape) correctly tessellating) |






| Question |  | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 21* |  | Angle $D B C=(180-50) \div 2$ <br> Base angles of isosceles triangle are equal <br> Angle $A B D=180-65$ <br> Angles on a straight line add up to $\underline{180}$ $x=180-20-115$ <br> Angles in a triangle add up to $\underline{180}$ <br> OR <br> Angle $D B C=(180-50) \div 2$ <br> Base angles of isosceles triangle are equal $\overline{x=65}-20$ <br> Exterior angle of triangle is equal to sum of interior opposite angles <br> OR <br> Angle $D C B=(180-50) \div 2$ <br> Base angles of isosceles triangle are equal $x=180-50-20-65$ <br> Angles in a triangle add up to $\underline{180}$ | 45 with reasons | 4 | M1 for $(180-50) \div 2$ oe or 65 seen <br> M1 for $180-20-(180-" 65 ")$ or " 65 " -20   <br>  or $180-50-20-65$ ' oe   <br> C2 for $x$ identified as 45 with full reasons <br> QWC: Reasons clearly laid out with correct geometrical language used <br> (C1 (dep on M1) for one reason QWC: Reasons clearly laid out with correct geometrical language used ) <br> NOTE: $x=45$ with no working or without any correct angles marked on the diagram cannot score. |


| 1M |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 22 | (a) | $\begin{aligned} & 360 \div 60=6 \\ & 300 \div 60=5 \\ & 6 \times 5= \end{aligned}$ | Yes and 30 | 兂 | M1 for dividing side of patio by side of paving slab eg $360 \div 60$ or $300 \div 60$ or $3.6 \div 0.6$ or $3 \div 0.6$ or 6 and 5 seen or 6 divisions seen on length of |
|  |  |  |  |  | M1 for correct method to find number of paving slabs <br> eg $(360 \div 60) \times(300 \div 60)$ oe or $6 \times 5$ <br> or 30 squares seen on diagram <br> (units may not be consistent) |
|  |  |  |  |  | A1 for Yes and 30 (or 2 extra) with correct calculations OR |
|  |  |  |  |  | M1 for correct method to find area of patio or paving <br> slab eg $360 \times 300$ or 108000 seen or $60 \times 60$ <br> or 3600 seen or $3.6 \times 3$ or 10.8 seen <br> or $0.6 \times 0.6$ or 0.36 seen <br> M1 for dividing area of patio by area of a paving slab <br> eg. $(3.6 \times 3) \div(0.6 \times 0.6)$ oe <br> (units may not be consistent) |
|  |  |  |  |  | A1 for Yes and 30 (or 2 extra) with correct calculations |
|  |  |  |  |  | OR <br> M1 for method to find area of patio and area of 32 slabs eg. $60 \times 60 \times 32$ or $360 \times 300$ |
|  |  |  |  |  | M1 for method to find both areas <br> eg. $60 \times 60 \times 32$ and $360 \times 300$ <br> (units may not be consistent) |
|  |  |  |  |  | $\begin{array}{llllll}\text { A1 } & \left.\begin{array}{llll}\text { for Yes and } \\ \text { OR Yes and } & 115200 & \text { and } & 108000 \\ & 11.52 & \text { and } & 10.8\end{array}\right)\end{array}$ |
|  |  |  |  |  | NB: Throughout the question, candidates could be working in metres or centimetres |


| 1MA0_1F |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 22 | (b) | 1726       <br> 25890       <br> 27616       | 276.16 | 3 | M1 for complete correct method with relative place value correct. <br> Condone 1 multiplication error, addition not necessary. <br> OR <br> M1 for a complete grid. <br> Condone 1 multiplication error, addition not necessary. <br> OR <br> M1 for sight of a complete partitioning method, condone 1 multiplication error. Final addition not necessary. <br> A1 for digits 27616 <br> A1 ft (dep on M1) for correct placement of decimal point after addition (of appropriate values) <br> (SC: B1 for attempting to add 32 lots of 8.63 ) |
| 23 | (a) <br> (b) | $1000 \div 200 \times 12$ | $30$ $60$ | $2$ <br> 2 | M1 for $25 \div 10$ or 2.5 seen or $10 \div 25$ or 0.4 seen or $12+12+6$ oe or a complete method eg. $25 \times 12 \div 10$ oe <br> A1 cao <br> M1 for $500 \div 50$ or $1000 \div 200$ or $500 \div 10$ <br> or correct scale factor clearly linked with one ingredient eg 10 with sugar or 5 with butter or flour or 50 with milk or an answer of 120 or 600 <br> A1 cao |



| 1M |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 25 | (a) |  | $6 y-15$ | 1 | B1 cao |
|  | (b) |  | $4 x(2 x+y)$ | 2 | $\begin{array}{\|lll} \text { B2 cao } & & \\ \text { (B1 } & \text { for } & x(8 x+4 y) \\ & \text { or } & 2 x(4 x+2 y) \\ & \text { or } & 4\left(2 x^{2}+x y\right) \\ & \text { or } & 4 x(a x+b y) \\ & \text { or } & a x(2 x+y) \\ & \text { or } & 4 x(2 x \quad y) \text { where } a, b \text { are positive integers } a \text { is a positive integer } \\ & \text { or } \end{array}$ |
|  | (c) | $\begin{aligned} & 10 t=g h \\ & h=\frac{10 t}{g} \end{aligned}$ | $\frac{10 t}{g}$ | 2 | M1 for clear intention to multiply both sides of the equation by 10 (eg. $\times 10$ seen on both sides of equation) or clear intention to divide both sides of the equation by $g$ <br> (eg. $\div \mathrm{g}$ seen on both sides of equation) <br> or $10 t=g h$ <br> or $\frac{t}{g}=\frac{h}{10}$ <br> or fully correct reverse flow diagram <br> eg. $\leftarrow \times 10 \leftarrow \div g \leftarrow$ <br> A1 for $\frac{10 t}{g}$ oe |


| 1MA0_1F |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 26 | (a) | $\begin{aligned} & 2 \times 5 \times 2=20 \\ & 300 \div 20= \end{aligned}$ | $15$ | 3 | M2 for $300 \div(2 \times 5 \times 2)$ oe   <br>  (M1 for $2 \times 5 \times 2$ <br> or $300 \div(2 \times 5)$  or or 20 seen  <br>   or 30 seen  |
|  | (b) | $c=\frac{30 \times 40}{150}=$ | 8 | 2 | M1 for $\frac{30 \times 40}{150}$ or 1200 seen <br> A1 cao |
| 27 |  | $\begin{aligned} & 3 x-15=2 x+24 \\ & x=39 \end{aligned}$ <br> OR $\begin{aligned} & 2 x+3 x-15+2 x+2 x+24=360 \\ & 9 x+9=360 \\ & 9 x=351 \\ & x=39 \end{aligned}$ $\begin{aligned} & \text { OR } \\ & 2 x+2 x+24=180 \\ & 4 x+24=180 \\ & 4 x=156 \\ & x=39 \end{aligned}$ <br> OR $\begin{aligned} & 2 x+3 x-15=180 \\ & 5 x-15=180 \\ & 5 x=195 \\ & x=39 \end{aligned}$ | 39 | 3 |  |

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG032619 Summer 2012


For more information on Edexcel qualifications, please visit our website www.edexcel.com

